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Training an overparameterized neural network can yield minimizers of the same level of training loss and yet different generalization capabilities. With evidence of correlation
between sharpness of minima and their generalization errors, increasing efforts were made to develop an optimization method to find flat minima as more generalizable solutions.
This sharpness-aware minimization (SAM) strategy, however, has not been studied much yet as to how overparameterization can actually affect its behavior. In this work, we
analyze SAM under varying degrees of overparameterization and present both empirical and theoretical results that suggest a critical influence of overparameterization on SAM.

Our contributions
• We prove that SAM can achieve a linear convergence rate under overparameter-

ization in a stochastic setting using standard techniques in optimization.
• We also show based on a stability analysis that the solutions found by SAM are

indeed flatter and have more uniformly distributed Hessian moments compared
to those of SGD.

• These results are corroborated with our experiments that reveal a consistent trend
that the generalization improvement made by SAM continues to increase as the
model becomes more overparameterized.

• We further present that sparsity can open up an avenue for effective overparam-
eterization in practice.

Sharpness-Aware Minimization
• Based on recent observations that indicate a correlation between the sharpness

of empirical risk f := Σn
i=1fi at a minimum and its generalization error (Keskar

et al., 2017; Jiang et al., 2020), Foret et al. (2021) suggest the min-max problem
of the following form

min
x

max
∥ϵ∥2≤ρ

f (x + ϵ)

where ϵ and ρ denote some perturbation added to x and its bound, respectively;
thus, the goal is now to seek x that minimizes f in its entire ϵ-neighborhood,
such that the objective landscape becomes flat.

• Taking the first-order Talyor approximation of f at x and solving for optimal ϵ⋆

gives the following update rule for SAM:

xt+1 = xt − η∇f

xt + ρ
∇f (xt)

∥∇f (xt)∥2

 .

Overparameterization
• A neural network can be called overparameterized if it has a sufficient number of

parameters to interpolate the whole training data, i.e., it achieves zero training
loss.

• From a stochastic optimization perspective, this means that there exists some
point that is stationary for all the risk for individual data point fi. We formalize
these observations as follows:
Definition 1. (Interpolation) There exists x⋆ such that fi(x⋆) = 0 and
∇fi(x⋆) = 0 for all i = 1, . . . , n, where n is the number of training data
points.

Stochastic SAM achieves linear convergence
Definition of relevant assumptions

Definition 2. (Smoothness) f is β-smooth if there exists β > 0 s.t. ∥∇f (x) −
∇f (y)∥ ≤ β∥x − y∥ for all x, y ∈ Rd.
Definition 3. (Polyak-Lojasiewicz) f is α-PL if there exists α > 0 s.t.
∥∇f (x)∥2 ≥ α(f (x) − f (x⋆)) for all x ∈ Rd.

Lemmas
These two lemmas essentially show that the stochastic SAM gradient aligns well
with and scales to the standard stochastic gradient, i.e., how similar SAM is to
SGD.
Lemma 4. Suppose that fi is β-smooth. Then

⟨∇fi(x + ρ∇fi(x)), ∇f (x)⟩ ≥ ⟨∇fi(x), ∇f (x)⟩ − βρ

2
∥∇fi(x)∥2 − βρ

2
∥∇f (x)∥2.

Lemma 5. Suppose that fi is β-smooth. Then
∥∇fi(xt + ρ∇fi(xt))∥2 ≤ (βρ + 1)2∥∇fi(xt)∥2.

Theorem 6 (Linear convergence of Stochastic SAM under overparameterization)

Suppose that fi is β-smooth, f is λ-smooth and α-PL, and interpolation holds.
For any ρ ≤ 1

(β/α+1/2)β , a stochastic SAM that runs for t iterations with step size
η⋆ def= α−(β+α/2)βρ

2λβ(βρ+1)2 gives the following convergence guarantee:

Ext
[f (xt)] ≤

1 − α − (β + α/2)βρ

2
η⋆


t

f (x0).

This result shows that a stochastic SAM converges at a linear rate under
overparameterization, which we corroborate through the following empirical results.
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Fig. 3: CIFAR-10

Linear stability analysis of SAM
Definition of Linear stability

Definition 6. (Linear stability) A minimizer x⋆ is linearly stable if there exists
a constant C such that E[∥x̃t − x⋆∥2] ≤ C∥x̃0 − x⋆∥2 for all t > 0 under
x̃t+1 = x̃t − ∇G(x⋆)(x̃t − x⋆).

Necessary condition of Linear stability
SAM requires bounded sharpness for linear stability.
Let a = λmax(H) be the sharpness. Then,

0 ≤ a(1 + ρa) ≤ 2
η
.

Here, the sharpness decreases as ρ increases. Comparing with the necessary
condition for SGD in Wu et al. (2018), i.e., 0 ≤ a ≤ 2/η, this result indicates
that SAM selects flatter minima than SGD in the overparameterized regime.

SAM requires bounded Hessian non-uniformity for linear stability.
Let sk = λmax((Ei[Hk

i ]−Hk)1/k) be the non-uniformity of the Hessian measured
with the k-th moment. Then,

0 ≤ s2
2 ≤ 1

η(η − 2ρ)
, 0 ≤ s3

3 ≤ 1
2η2ρ

, 0 ≤ s4
4 ≤ 1

η2ρ2.

We find that SAM puts additional constraints on s3 and s4 whereas SGD only
upper bounds s2. We also remark that a larger ρ makes the bounds on s3 and
s4 smaller, which may lead to more uniform Hessian moments.

To corroborate our result, we evaluate the empirical sharpness and non-uniformity
of Hessian on an overparameterized MLP network for MNIST with squared loss. All
models are trained to reach near-zero loss.
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Fig. 4: Loss landscape (SGD)
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Fig. 6: Hessian non-uniformity

Overparameterization benefits SAM improvement
Here, we evaluate the effect of overparameterization on the generalization improve-
ment of SAM, i.e., the gap of validation accuracy between SAM and SGD.
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Fig. 7: MNIST/3-layer MLP
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Fig. 8: CIFAR10 / Resnet18
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Fig. 9: Imagenet / Resnet50

• The generalization benefit of SAM increases with an increasing number of
parameters across all settings; in other words, SAM outperforms SGD with a
larger margin in overparameterized regimes.

• Specifically for Cifar-10 with ResNet18, the accuracy gap between SAM and SGD
increases from around 0.3% for networks with 45 thousand parameters to 1.0%
for those with more than 11 million parameters.

• Overall, the increased generalization performance of SAM with more parameters
renders a promising avenue since modern neural network models are often heavily
overparameterized (Zhang et al., 2022; Dehghani et al., 2023).

Sparse overparameterization for SAM
• In this section, we train several models of varying sparsity levels from scratch

using SGD and SAM and compare their generalization performances.
• Here we sparsify an overparameterized model such that the number of parameters

matches the original model.
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Fig. 10: Random pruning
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Fig. 11: SNIP

• We first observe that the generalization improvement of SAM from SGD tends to
increase as the model becomes more sparsely overparameterized, which suggests
that one can consider taking sparsification more actively when using SAM.

• We also see that the trend seems more evident with SNIP which preserves the
trainability of sparse models better than the naive random sparsity.


