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: We propose SAFE and SAFE+, constrained optimization
algorithms to enforce flatness simultaneously with sparsity
: strong/robust performance across various sparsity/settings
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(a) Dense training

0.5 0.0 0.5
 

0.5

0.0

0.5

 

Sharpness: 0.2

0.01
0.02

0.03
0.04

0.05

(b) ADMM
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(c) SAFE: sparse and flat
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Figure 1: Validation accuracy (mean±std) of VGG-19 and ResNet-20/32 models on
CIFAR-10/100 pruned across different sparsity levels and methods. SAFE consistently
achieves superior performance across a broad range of sparsity levels.
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LLaMa-2 LLaMa-3

7B 13B 8B
Sparsity Method Wikitext/C4 Wikitext/C4 Wikitext/C4

0% Dense 5.47 / 7.26 4.88 / 6.72 6.23 / 9.53

50%

Magnitude 16.03 / 21.33 6.82 / 9.37 134.20 / 273.3
SparseGPT 6.99±0.03 / 9.20±0.03 6.06±0.03 / 8.20±0.01 9.36±0.11 / 13.96±0.02

Wanda 6.92±0.01 / 9.23±0.00 5.98±0.01 / 8.28±0.01 9.71±0.03 / 14.88±0.04

ALPS 6.87±0.01 / 8.98±0.00 5.96±0.02 / 8.09±0.04 9.05±0.12 / 13.40±0.06

SAFE 6.78±0.01 / 8.93±0.00 5.76±0.01 / 7.85±0.02 9.59±0.06 / 14.60±0.04

SAFE+ 6.56±0.01 / 8.71±0.00 5.67±0.01 / 7.74±0.01 8.62±0.06 / 13.26±0.06

60%

Magnitude 1864 / 2043 11.81 / 14.62 5335 / 7438
SparseGPT 10.19±0.08 / 12.86±0.05 8.31±0.09 / 10.85±0.09 15.46±0.40 / 21.25±0.18

Wanda 10.75±0.07 / 13.87±0.01 8.43±0.07 / 11.55±0.01 22.06±0.19 / 32.28±0.37

ALPS 9.55±0.00 / 11.24±0.03 7.54±0.03 / 9.87±0.05 14.03±0.35 / 18.72±0.15

SAFE 9.20±0.04 / 11.51±0.04 7.18±0.03 / 9.59±0.03 15.90±0.25 / 22.26±0.16

SAFE+ 8.30±0.06 / 10.59±0.00 6.78±0.04 / 9.02±0.15 12.18±0.22 / 17.30±0.02

4:8

Magnitude 15.91 / 31.61 7.32 / 9.96 212.5 / 336.3
SparseGPT 8.42±0.05 / 10.73±0.03 7.02±0.06 / 9.33±0.04 12.16±0.20 / 17.36±0.06

Wanda 8.64±0.03 / 11.35±0.01 7.01±0.02 / 9.70±0.03 13.84±0.04 / 21.14±0.06

ALPS 8.11±0.09 / 10.21±0.04 6.81±0.07 / 9.33±0.04 11.38±0.17 / 16.10±0.10

SAFE 8.21±0.01 / 10.61±0.04 6.60±0.02 / 8.95±0.02 12.15±0.14 / 17.90±0.15

SAFE+ 7.59±0.03 / 9.88±0.01 6.37±0.03 / 8.61±0.01 10.51±0.13 / 15.67±0.02

2:4

Magnitude 37.77 / 74.70 8.88 / 11.72 792.8 / 2245
SparseGPT 11.00±0.20 / 13.54±0.03 8.78±0.09 / 11.26±0.11 15.87±0.32 / 22.45±0.12

Wanda 12.17±0.02 / 15.60±0.11 9.01±0.04 / 12.40±0.01 23.03±0.38 / 34.91±0.31

ALPS 9.99±0.19 / 12.04±0.04 8.16±0.17 / 10.35±0.18 14.53±0.33 / 19.74±0.18

SAFE 10.53±0.13 / 13.20±0.07 7.64±0.05 / 10.10±0.01 17.49±0.27 / 24.45±0.13

SAFE+ 8.96±0.07 / 11.34±0.03 7.20±0.04 / 9.52±0.01 13.39±0.23 / 19.03±0.01

Table 1: Perplexities (mean±std) of LLaMa models pruned to various sparsity levels
using different methods. SAFE achieves competitive performance, while SAFE+ outper-
forms baselines across all settings.
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(Left) SAFE successfully finds sparse models at flat minima
(Center) SAFE achieves strong image classification performance
(Right) SAFE and SAFE+ achieves strong LLM pruning performance

Contact: {dongyeop.lee_, kwanhee.lee, jinseokchung, namhoon.lee}@postech.ac.kr

Finding better Sparse Neural Networks is hard
• Sparse neural networks are neural networks with a lot of zero-valued weight parameters.
• They can use up less memory and computation than dense ones, making them

increasingly sought after as modern models grow to extreme sizes.

min
∥x∥0≤d

f (x)

• Various neural network pruning techniques were developed to find sparse neural networks
x with good performance or minimal loss f .

• Still, it remains a constant challenge to push for higher sparsity with minimal
performance degradation.

Degraded performance by loss sharpness
• Sharpness of loss has been suggested as a major cause for diminishing the

trainability of sparse networks in high sparsity (Lee et al., 2021).
• More generally, its strong correlations with degradation in generalization

performance has been well studied (Keskar et al., 2017).

Sharpness
minimization

• Various techniques were proposed to explicitly minimize sharpness during training
(Foret et al., 2021).

• This has been shown to be effective in improving the generalization performance
and robustness of neural networks.

Enforcing flatness to improve sparsification

??

Despite studies connecting degraded performance by sparsification to loss sharpness,
very little work has attempted to develop a general framework to explicitly reduce
sharpness while sparsifying neural networks.

Safe! To fill this gap, we propose Safe, a general constrained-optimization-based
framework to simultaneously enforce flatness and sparsification while
optimizing the neural network.

SAFE: Sparsification via ADMM with Flatness Enforcement
Sharpness-aware sparsity-constrained optimization problem
min

∥x∥0≤d
max
∥ϵ∥2≤ρ

f (x+ϵ) We first formulate this as an optimization problem, where the goal is to find a
sparse solution x⋆ with at most d non-zero elements that minimizes the objective
function in the whole ϵ-neighborhood, i.e., seek flat minima.

Augmented Lagrangian based approach
To solve this, we form the augmented Lagrangian dual problem of the following:

max
u

,min
x,z

[
L(x, z, u) := max

∥ϵ∥2≤ρ
f (x + ϵ) + I∥·∥0≤d(z)−

λ

2
∥u∥22 +

λ

2
∥x− z + u∥22

]
,

where we separate the sparsity-constraint satisfaction using variable z so that it can be handled more
easily.

Alternating Direction Method of Multipliers

xk+1 = argmin
x

max
∥ϵ∥2≤ρ

f (x + ϵ) +
λ

2
∥x− zk + uk∥22 (x-min)

zk+1 = argmin
z

I∥·∥0≤d(z) +
λ

2
∥x− z + u∥22 (z-min)

uk+1 = uk + xk+1 − zk+1

We apply dual ascent and minimize x and z
in an alternating fashion, which gives us this
ADMM iterate.

x-minimization: iterative minimization while enforcing flatness
We solve this iteratively using Sharpness-aware minimization (SAM), where we approximately solve for
ϵ through first-order Taylor approximation:

ϵ⋆(x) ≈ argmax
∥ϵ∥2≤ρ

f (x) + ϵ⊤∇f (x) = ρ
∇f (x)

∥∇f (x)∥2
.

Applying this back to the objective and applying gradient descent gives us the following iteration for
x-minimization

(x-min) x
(t+1)
k

= x
(t)
k

− η(t)
[
∇f

(
x
(t)
k

+ ρ
∇f (x

(t)
k
)

∥∇f (x
(t)
k
)∥2

)
+ λ(x

(t)
k

− zk + uk)

]

z-minimization: Euclidean projection onto sparsity constraint

(z-min)

zk+1 = argmin
z

I∥·∥0≤d(z) +
λ

2
∥xk+1 − z + uk∥22

= proj∥·∥0≤d(xk+1 + uk).

• z-minimization corresponds to projecting xk+1 + uk
onto the sparsity constraint in terms of Euclidean
distance.

• This leads to the classic hard thresholding
operator, where we zero out except d elements
with the largest magnitude.

SAFE+: Improving projection through generalized distance
Generalized quadratic distance to improve projection

zk+1 = projP∥·∥0≤d(xk+1 + uk)

:= argmin
∥z∥0≤d

1

2
∥z − (xk+1 + uk)∥2P

= argmin
∥z∥0≤d

1

2
(z − (xk+1 + uk))

⊤P(z − (xk+1 + uk)).

• However, this magnitude-based projection
often yields subpar performance in practice.

• To improve this, we introduce a generalized
distance 1

2∥ · ∥2P with diagonal positive definite
matrix P.

Distance vs. saliencies
Criteria P

Magnitude I
OBD diag(H)

SNIP diag(∇f∇f⊤)
Wanda diag(A⊤A)

• This generalized projection framework allows us to employ various saliency scores
within the projection step

• Here we use this primarily for LLM pruning, though it is generally applicable to
other domains

SAFE demonstrates strong empirical performance
←1. Successful sparsity and flatness enforcement

• Weights are concentrated near zero → sparse
• Wide minima + smaller largest Hessian eigenvalue → flat

←2. Strong image classification performance
• Safe retains strong performance at high sparsities compared to baselines.
• Epoch: 200 (300 for ResNet-20) / Recompute batch statistics after final hard projection step

←3. Strong LLM pruning performance
• Compared to methods specifically designed for LLMs, Safe performs competitively and Safe+

outperforms all baselines across all models and sparsities.
• Blockwise Safe: Following common practice, we sequentially apply Safe to each transformer

block to minimize the reconstruction error as min∥x∥0≤d ∥Block(inputs;x)− Block(inputs;xoriginal)∥.
• Safe+: Projection based on diagonal Hessian of the Layerwise reconstruction error is employed,

which corresponds to using the Wanda score.
• Epoch: 30 / Dataset: 128 random samples from the first shard of the C4 dataset / seq len: 2048
• (Sidenote) As model scales, the computation of Safe scales quadratically with the model

width. In contrast, methods such as SparseGPT and ALPS scales cubically (see Appendix E).
4. Strong robustness to various data noise

Safe is robust to noisy label training (left), as well as common image corruptions and adversarial
attacks (right) on ResNet-20/CIFAR-10.

Noise ratio
Sparsity Method 25% 50% 75%

70% ADMM 77.00±0.91 59.18±0.55 32.62±0.89
Safe 90.58±0.30 86.51 ±0.16 67.01±0.54

80% ADMM 76.18±0.56 62.67±0.38 32.86±1.12
Safe 91.25±0.12 86.55±0.07 66.49±0.56

90% ADMM 79.40±0.12 66.64±0.13 36.84±0.94
Safe 90.68±0.21 86.49±0.06 64.72 ±0.61

95% ADMM 77.71±0.52 67.10±1.37 39.68±1.44
Safe 89.86±0.11 85.18±0.15 64.25±0.36

Common corruption (avg.) Adversarial
Sparsity Method intensity=3 intensity=5 l∞-PGD l2-PGD

90% ADMM 70.06±0.03 52.01±0.38 49.81±1.02 49.71±1.06
Safe 73.98±0.09 55.11±0.27 56.43±1.03 56.36±1.11

95% ADMM 68.87±0.25 50.56±0.07 49.84±1.78 49.68±1.79
Safe 72.92±0.41 54.86±0.51 51.40±0.89 51.36±0.94

98% ADMM 65.46±0.24 48.65±0.04 43.33±1.59 43.42±1.60
Safe 68.20±0.47 49.96±0.83 43.34±0.90 43.41±1.03

99% ADMM 59.21±0.47 43.81±0.44 30.29±0.64 30.32±0.58
Safe 66.02±0.56 49.34±1.03 43.70±1.28 32.70±1.28

99.5% ADMM 55.72±0.44 41.55±0.78 23.25±1.92 23.25±1.85
Safe 56.58±0.36 42.27±0.63 29.48±0.68 29.45±0.74

SAFE converges to stationary point within sparsity constraint
(δ-stationary point) We say a point x̄ is a δ-stationary point of the sparsity-constrained optimization
problem if x̄ ∈ argmina∈A

∥∥a− (
x̄− δ−1∇f (x̄)

)∥∥ ,

(Convergence of Safe) Suppose that f is smooth and weakly convex. Assume further that δ is chosen
large enough so that δ−1β2 − (δ − µ)/2 < 0. Let (x̄, z̄, ū) be a limit point of Safe algorithm. Then x̄ is a
δ-stationary point of the sparsity-constrained optimization problem.
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